Some Recent Results on Hyperspectral Image Classification*

نویسندگان

  • C. A. Shah
  • P. Watanachaturaporn
  • P. K. Varshney
  • M. K. Arora
چکیده

In this paper, we present a summary of our ongoing research on the classification of hyperspectral images. We are experimenting with both supervised and unsupervised algorithms. In particular, we have developed an unsupervised classification algorithm based on Independent Component Analysis (ICA). This algorithm is known as the ICA mixture model (ICAMM) algorithm and has shown promising results. In addition, we are investigating the use of Support Vector Machines (SVMs), a supervised approach for the classification of hyperspectral data. We have employed the Lagrangian optimization method and call our classifier the Lagrangian SVM (LSVM) classifier. Classification accuracy of these classifiers has been assessed using an error matrix based overall accuracy measure. Keywords-hyperspectral images; classification; independent componenet analysis, ICA mixture model; support vector machines

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra

Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001